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We study the phases of Bloch insulators with time-reversal symmetry on the basis of the homotopy of the
ground-state wave functions in momentum space and find that there are two topological classes characterized
by a Z2 invariant. The results are in agreement with a recent study based on counting the zeroes of a certain
Pfaffian function related to the ground-state wave function. It is shown that there is a link between the
formulation of the topological invariant presented here and the number of robust edge states. A formula is also
provided which greatly simplifies the computation of the invariant in a large number of cases. The present
study provides guidance for the search of systems which belong to the nontrivial topological class and also
establishes a link between the quantum spin Hall effect and the integer quantum Hall effect.
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I. INTRODUCTION

There has been a fair amount of recent theoretical and
experimental interest in those transport properties of materi-
als which involve the spin rather than the charge degree of
freedom, fueled in part by the possibilities of their applica-
tions in devices. One of the more interesting phenomena that
has been investigated is the spin Hall effect,1,2 a phenomenon
in which a spin current is generated in a transverse direction
to an applied electric field. Recently, a number of two-
dimensional �2D� models have been proposed where the
quantum spin Hall effect �QSHE� is said to occur3,4 In these
models the spin Hall conductance, defined as the ratio of the
spin-current density to the external electric field, is a mul-
tiple of e2 /h. This is reminiscent of the integer quantum Hall
effect �IQHE� where the Hall conductance �xy is quantized:
�xy =ne2 /h, where n is an integer. In the IQHE, systems with
different values of n �where �xy =ne2 /h� belong to different
phases, each of which is characterized by a topological
invariant5 whose value is n. The number n is also equal to
the number of robust edge states in the system.6,7

In systems with time-reversal �TR� symmetry, no net
charge currents can flow along the edges of the sample.
However, pairs of edge channels which carry charge in op-
posite direction can still exist and are in fact a feature of
some of the proposed models. Further, it has been noticed
that there is a distinction between models with an odd num-
ber of pairs of zero-energy edge states and those with an
even number of pairs of such edge states. An odd number of
pairs of zero-energy edge states are stable against small TR
invariant perturbations, while an even number of pairs is
not.8,9

In the QSHE, the value of the spin Hall conductance is
not quantized in general.10 Thus, unlike the IQHE, the spin
conductance cannot be used to classify different phases.
However, a topological Z2 invariant which takes only the
values 0 and 1 has been introduced to characterize systems
which display the QSHE, and more generally, any 2D Bloch
insulator which preserves time-reversal symmetry.11 This in-
variant is expressed in terms of the zeroes of a Pfaffian, and
in this form, it is quite different from the topological invari-
ant for the IQHE.

We thus see that there are two types of classification, one
based on the number of robust edge states and another based
on topology. It seems likely that these two classification
schemes are related. Since a connection between the edge
states and the topological invariant is well known in the case
of the IQHE, establishing this link in the QSHE can lead to a
deeper understanding of the relation between the IQHE and
the QSHE. Establishing such a connection is therefore highly
desirable and is one of the aims of this paper.

We present a formulation of the topological invariant
which is based on the obstructions to continuing the wave
functions in momentum space. We first consider a two-band
model and study the topology of the wave functions in mo-
mentum space. We then generalize this to systems with an
arbitrary number of band pairs. This formulation has several
useful features. For instance, it makes it easy to compute the
Z2 invariant for a large number of models. It also provides
guidance for the construction of models with a nontrivial Z2
invariant besides providing a natural connection between the
IQHE and the QSHE.

II. TOPOLOGY OF GROUND-STATE WAVE FUNCTIONS

A. Single pair of occupied bands

We first consider an insulator model which has a single
pair of occupied bands in the ground state before generaliz-
ing our results to systems with an arbitrary even number of
occupied bands. Since we only consider systems with time-
reversal symmetric ground states, the number of occupied
bands is always even. A generic four-band time-reversal-
invariant tight-binding Hamiltonian can be written in mo-
mentum space in the form11

H�k� = �
a=1

5

da�k��a + �
a�b=1

5

dab�k��ab, �1�

where �a’s are the Dirac matrices as defined in Ref. 11 and
the da’s and dab’s are symmetric and antisymmetric functions
in momentum space as required by time-reversal invariance.
The ground state then consists of two bands which map onto
each other under time reversal.
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Our approach will be to study the topology of the ground-
state wave function which is closely related to the topology
of the Bloch wave functions in momentum space. Momen-
tum space is topologically equivalent to the two torus in this
case. We will see that it is impossible to find a continuous set
of Bloch wave functions which satisfy certain conditions that
we will specify. This situation is analogous to the problem
that arises in the specification of the wave function of an
electron in the vicinity of a magnetic monopole �the so-
called Dirac monopole�. Consider the wave function of the
electron on the surface of a two-dimensional sphere which
surrounds a magnetic monopole. It is well known that the
wave function cannot be continuously specified on the entire
surface of the sphere. However two sets of continuous-wave
functions can be found for the two hemispheres and these
can be glued together. The difference in our case is that we
have a two-dimensional spinor rather than a single-
component wave function.

Let V�k� be the vector space spanned by the two occupied
bands at the point k. Time-reversal symmetry leads to an
involution on the torus and on the fiber bundle, i.e., it relates
the wave functions at k to those at −k. It is always possible
to find locally continuous-wave functions in momentum
space which span the vector space V�k�. However finding a
globally continuous basis may not be possible. In such a case
one can still construct locally continuous-wave functions and
“glue” them together.12 The topology of the Brillouin zone
for a two-dimensional periodic lattice is equivalent to a two-
dimensional torus. Consider a two-dimensional torus which
we divide into five nonoverlapping regions A, B, C, D, and E
as shown in Fig. 1. We also use the letters A, B, C, D, and E
to denote open sets which contain and are slightly larger than
the regions marked by these names in the figure, and E� to
label the open set which contains the complement the region
bounded by the dashed line. We study the transition matrices
in the overlaps of these open sets.13

In the present case, it is sufficient to study the set of
vector bundles which are homotopic to the one whose tran-
sition matrices across regions, A ,B etc. differs from the iden-
tity only along the dashed line marked in the figure. This is
equivalent to taking into consideration only those sets of
wave functions which are locally continuous in E and E� �but

not necessarily globally continuous�. We consider a set of
continuous orthogonal vector functions and define the basis
vectors �1,0�T and �0,1�T in terms of these wave functions
on the two regions separated by the dashed curve �namely
the region E and its complement�. These wave functions
used as the basis for the vector space, V�k�, are chosen such
that the following holds. If a wave function ��k� is repre-
sented as �v ,k�, where v is a spinor in the basis described
above, then the operation of time reversal maps this onto the
wave function which can be written in the same basis and
representation as �i�2K0�v� ,��k��, where � takes k to −k,
�2 is the Pauli sigma matrix, and K0 is the operator which
corresponds to complex conjugation.

We parametrize the dashed curve in Fig. 1 by the angle
��S1 �where S1 is the unit circle� which varies from 0 to 2�
in such a way that if the parameter � corresponds to a point
k, then �+� corresponds to the point −k. If v and v� are two
spinors which represent the same vector v at the point pa-
rametrized by � in the two regions, E and E�, then they are
related by means of a transition matrix v=U���v�, where
U����U�2�. Here v is an element of V��� and is therefore
an �arbitrary� linear combination of the energy eigenstates at
the point �. If we now write down the transition matrix
U����U�2� for some value of � in the form ei	Iein.�
, then
time-reversal invariance leads to the condition that

U�� + �� = e−i	Iein.�
. �2�

Here, �i are the Pauli sigma matrices.
It follows from Eq. �2� that if we write U��� as a function

ei����Ig���, where ���� and g����SU�2� are continuous
functions, then these functions satisfy the conditions ����=
−��0�+ p� , g���=e−ip�Ig�0�, where p is an integer. If p is
even, g�p�=g�0� and since �1�SU�2��=0, it follows that the
transition function in this case can be continuously deformed
to the constant function U���=eip�/2g�0�. When p is odd,
then g���=−g�0� and thus g��� and g�0� are always distinct
elements for any value of g�0�. We can deform an arbitrary
function g��� which satisfies this condition to the particular
one eip�/2ei��+�/2��3. Thus the class of transition functions
consists of two distinct topological classes. An adiabatic
change in the Hamiltonian leads to a continuous change in
the transition function and vice versa. Hence, it follows that
there are two distinct topological classes of ground-state
wave functions.

We note that the above arguments can also be intuitively
understood as follows:14 the two occupied Bloch bands may
be regarded as two components of a two-dimensional Dirac
spinor with an effective SU�2� degree of freedom �the U�1�
degree of freedom is absent due to time-reversal symmetry�
with the restriction that the element of SU�2� at k and −k
map onto the same element of SU�2� /Z2. The index is then
equivalent to the fundamental group of SU�2� /Z2 which is
Z2.

To make the connection with the TKNN invariant5 and
Chern numbers, let us first suppose that the bands have well-
defined Chern numbers. In this case, one can choose the
energy eigenstates as the continuous-wave functions which
define the basis of the vector space V�k� at each point k in
momentum space. The transition function which corresponds

BA

C D

E

FIG. 1. The two-dimensional torus divided into five regions A,
B, C, D, and E. The dashed curve marks the path along which we
study the transition matrices.
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to bands with Chern numbers n ,−n can be continuously de-
formed to the diagonal matrix with entries ein��+�� ,e−in�. It is
readily verified that p may be taken to be �n. The connec-
tion between Chern numbers of bands and number of robust
edge states previously made in the context of integer quan-
tum Hall systems7 can now be extended to systems with
time-reversal symmetry. The set of time-reversal-invariant
band insulators with two occupied bands then fall into two
topologically distinct categories: �i� when the bands carry
even Chern numbers, the ground state is topologically
equivalent �i.e., may be adiabatically continued� to the state
with no edge modes and �ii� when the bands carry odd Chern
numbers, the ground state is topologically equivalent to the
state that has a single pair of edge modes.

If the Bloch wave functions are not continuous and dif-
ferentiable and therefore have no well-defined Chern num-
bers, then one may still use the formula after the following
steps. Suitable linear combination of the energy eigenstates
can be chosen as the basis of orthogonal continuous-wave
functions on the patches E and E� in such a way that these
new wave functions then have well-defined Chern numbers.
This follows from the fact that the transition matrices at the
boundary of E and E� can always be transformed to a diag-
onal form as shown earlier and is consistent with the “split-
ting principle.”15 Alternatively, one may adiabatically con-
tinue the Hamiltonian to one whose filled bands have well-
defined Chern numbers. The Chern numbers of these wave
functions �the eigenstates of the new Hamiltonian or the lin-
ear combinations with well-defined Chern numbers� may
then be used to calculate the Z2 invariant.16 The new Hamil-
tonian then has either an odd or an even number of edge
modes depending on the value of the topological invariant.
Further, since an odd number of pairs of edge states is stable
whereas an even number of such pairs is not8,9 and cannot,
therefore, change under an adiabatic transformation, we may
argue that the original Hamiltonian has either a single pair of
robust edge states or none depending on whether it is in the
nontrivial or the trivial topological class.

We have thus established a one-to-one correspondence be-
tween the systems with a nontrivial topological invariant and
those with a robust pair of edge states.

B. Multiple pairs of occupied bands

We now consider a system with 2N occupied bands where
N is a positive integer. We choose a basis for the vector
bundles in each region chosen again such that the time-
reversal operator in this basis is JK0� in the notation used
earlier where J is the matrix whose only nonzero elements
are J�2i ,2i+1�=−J�2i+1,2i�=1 and K0 is the complex-
conjugation operator as before. We write the transition func-
tion in the form U���=ei����g���, where ���� and g��� are
continuous functions. Time-reversal invariance then leads to
the conditions

���� = − ��0� +
p�

N
, g��� = e−ip�I/NJg*�0�J−1. �3�

In this case too there are two classes of transition functions
corresponding to two classes of band structures depending
on whether p is odd or even.

Since �1�SU�2N��=0 we can continuously deform an ar-
bitrary transition function U��� which satisfies the above
constraints imposed by time-reversal invariance to one
whose value at �=0 is the diagonal matrix with matrix ele-
ments U�2i ,2i�=ei�e−i	iei
i and U�2i+1,2i+1�=ei�ei	iei
i,
where

� =
p�

2N
,


i =
− p�

2N
, i � 1,


1 =
− �

4
+ �− 1�r�

4
−

p�

2N
,

	i = 0, i � 1

	1 =
�

4
− �− 1�r�

4
.

Here r= p mod 2.
If p is even, then g���=g�0� and the transition function

can be continuously deformed to a constant function. When
p is odd, it can be easily shown that there is no g�0� �not
just diagonal� such that g���=g�0�. In this case it can be
seen that a constant multiple of the matrix whose only non-
zero elements are U����1,1��=ei� ; U����2,2�=e−i��+�� ;
U����i , i�=1, i�1,2 satisfies the condition at �=0 specified
above.

It is easy to verify that if the bands have Chern numbers
�ci ,−ci�, then p may be taken to be p=�ici.

17

Let us define

C = �
cn
0

cn, �4�

where n is the band index18 and cn is the corresponding
Chern number given by19

cn = �i/2��� Tr�dPnPndPn� , �5�

where Pn�k�= 	�n�k�
��n�k�	 is the projection operator corre-
sponding to the nth band. The sum is taken over the set of
bands which have positive Chern numbers. Then we are led
to define the Z2 index

E = C mod 2, �6�

which labels the topologically distinct classes of bands.

III. DISCUSSION

These results can also be understood from a band-
touching picture. Time-reversal invariance dictates that when
time-reversed pairs of bands touch, they do so at an even
number of points and the Chern number exchange is always
an even number. However, two sets of such bands, each with
Chern numbers �1, may touch. The Chern number of each
band after the exchange is zero.
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Using the above formula, the Z2 index of several recent
quantum spin Hall models can be readily calculated. The
index is equal to 1 for the models proposed in Refs. 2, 3, and
20. The Kane Mele Hamiltonian3 for the spin Hall effect in
graphene is equivalent to two copies of the Haldane Hamil-
tonian for the integer quantum Hall effect on a honeycomb
lattice. Hence, the Chern numbers of the occupied bands are
�1 in the quantum spin Hall phase. Hence, the invariant as
calculated by the above formula is E=1. In the normal insu-
lator phase, the Chern number of both the bands is zero, and
hence E=0. These systems thus exhibit a topologically non-
trivial phase and have robust edge states in certain phases.

The extension of the TKNN �Ref. 5� numbers to systems
with interactions and disorder is usually done by expressing
the Hall conductance of the bands in terms of the Chern
numbers in the space of the parameters that determine gen-
eralized periodic boundary conditions. A spin-Chern number
has been recently proposed by extending this idea to spin
quantum Hall systems.21 Our analysis suggests that while
this classification is useful for the case when the Hamiltonian
of the system can be derived from a Hamiltonian which has
a pair of occupied bands whose Chern numbers are �1 in the
ground state �with the rest of the occupied bands having zero
Chern number�, it might fail when this condition is not met.

The Z2 index as formulated here and in Ref. 11 both pro-
vide a topological classification of band insulators in two
dimensions. It follows from topological considerations of K
theory22 that they must be formally equivalent.

We have presented a Z2 index, which has the advantage of
being easy to compute in many cases, to characterize quan-
tum spin Hall models and other time-reversal-invariant
Bloch Hamiltonians. It is expressed in terms of the Chern
numbers of the bands of the model, which leads to a link
between the index and the number of pairs of robust edge
states of the system. On the basis of K theory, an equivalence
between the present index and the one presented by Kane
and Mele is claimed. The invariance of the index was proved
using topological obstruction arguments as well as a more
intuitive band-touching argument. This study also suggests
that the Z2 index can be used to study other systems and
leads to a natural connection between the quantum spin Hall
effect and the integer quantum Hall effect. A method has
recently been proposed which aids in the efficient calculation
of the topological Z2 index based on the obstruction method
and the formula in terms of the Chern numbers presented
above.23
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